

harp3@ndph.ox.ac.uk

www.harp3trial.org

Introduction

- Patients with CKD are at increased risk of cardiovascular disease and renal progression.
- Among patients with heart failure, sacubitril/valsartan has been shown to reduce the risk of cardiovascular disease and preserve estimated glomerular filtration rate, but increases albuminuria.^{1,2}
- The effects of sacubitril/valsartan in patients with established chronic kidney disease are not known.

Aims

To compare the effects of sacubitril/valsartan and irbesartan on:

- Measured glomerular filtration rate (mGFR)
- Urine albumin:creatinine ratio (uACR)
- Estimated glomerular filtration rate (eGFR)
- Systolic and diastolic blood pressure
- Tolerability and safety

Methods

- Patients were eligible if they met the following criteria:
 - eGFR ≥20 <45 mL/min/1.73m²; or
 - eGFR \geq 45 <60 mL/min/1.73m² and uACR >20 mg/mmol
 - Potassium <5.5 mmol/L
 - No history of angioedema or other contraindication to sacubitril/valsartan or irbesartan
- Follow-up visits at 1, 3, 6, 9 and 12 months (Figure 1):
 - Serious adverse events and non-serious adverse reactions collected at each visit
 - Local laboratory measurement of creatinine, potassium, LFTs at each visit
 - Central samples (for creatinine and uACR) at 0, 3, 6 and 12 months
 - Sample for pharmacokinetic analyses at 3 months
 - GFR measured at randomization and 12 months
- Intention-to-treat ANCOVA analysis with multiple imputation for missing data.
- Standard log-rank methods for adverse event analyses

Figure 1: Design of UK HARP-III trial³

Randomized multicentre pilot study of sacubitril/valsartan versus irbesartan in patients with chronic kidney disease: **United Kingdom Heart and Renal Protection (UK HARP)-III**

Richard Haynes, Parminder K Judge, Natalie Staplin, Martin J Landray and Colin Baigent on behalf of the UK HARP-III Collaborative Group MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford

Results Between November 2014 and March 2016, 620 patients were screened at 24 sites across the UK. Of the 620 screened participants, 414 were randomized (see Table 1). Table 1: Baseline characteristics (at Randomization visit) Characteristic Age, years Men Systolic/diastolic blood pressure, mmHg Cause of kidney disease Glomerular disease 29% Diabetic kidney disease 17% Other known cause 35% 19% Unknown uACR, mg/mmol (median [IQR]) 52 (11-162) eGFR, mL/min/1.73m² 35.4 (11.0) Data are mean (SD) or % unless otherwise indicated • By 12 months, 21% and 20% had stopped full-dose sacubitril/valsartan or

- difference in means -0.1 (SE 0.7) mL/min/1.73 m^2 ; p=0.86 (Table 2).
- There was no evidence that the effect of treatment varied in any subgroup.

Table 2: Primary outcome

irbesartan respectively.

Visit

Randomization 12 months

- There was no difference in eGFR at any time point (Figure 2).
- months) and after 3 months (3-12 months).

Figure 2: eGFR by time

Irbesartan
(n=207)
63.6 (13.4)
72%
146 (16) / 80 (11)

25% 23% 36% 16% 56 (11-146) 35.5 (11.0)

• Measured GFR at 12 months did not differ between the two groups:

Mean mGFR (SE) (mL/min/1.73m ²)			
Sacubitril/valsartan	Irbesartan		
(n=207)	(n=207)		
34.0 (0.8)	34.7 (0.8)		
29.8 (0.5)	29.9 (0.5)		
		-	

The slopes in eGFR were similar overall (0-12 months), and acutely (0-3)

–□– Irbesartan

12

- ratio 1.07 [0.75-1.53])
- rate ratio 1.35 [0.96-1.90])

Table 3: Hyperkalaemia and renal safety

Outcome

Potassium (mmol/L) ≥5.5 to <6.0 ≥6.0 to <6.5 ≥6.5 Any potassium ≥5.

≥25% reduction in eGF

Conclusions

- to irbesartan.

References

1 JJV McMurray *et al*. New Engl J Med 2014; 371: 993-1004 2 Voors AA et al. Eur J Heart Fail 2015; 17: 510-7 3 UK HARP-III Collaborative Group. Nephrol Dial Transplant doi: 10.1093/ndt/gfw321

Acknowledgements UK HARP-III was sponsored, designed, run and analysed by the University of Oxford. The study was supported by Novartis with additional support from the UK MRC.

UK HARP-III Steering Committee

• Allocation to sacubitril/valsartan compared to irbesartan was associated with:

a non-significant 9% (95% CI -1 to 18) reduction in study average uACR

• a 5.4 (3.4-7.4) mmHg reduction in study average systolic blood pressure

• a 2.1 (1.0-3.3) mmHg reduction in study average diastolic blood pressure

• similar rates of serious adverse events (61 [29.5%] vs 59 [28.5%]; rate

• similar rates of non-serious adverse reactions (76 [36.7%] vs 58 [28.0%];

• a similar proportion of participants experiencing hyperkalaemia (p=0.10) and $\geq 25\%$ reduction in eGFR (p=0.75) (Table 3)

	Sacubitril/valsartan (n=207)	Irbesartan (n=207)	_
	44 (21%)	38 (18%)	
	20 (10%)	7 (3%)	
	2 (1%)	5 (2%)	
5.5	66 (32%)	50 (24%)	
FR	71 (34%)	67 (32%)	

• Compared to irbesartan, allocation to sacubitril/valsartan had no effect on kidney function over 1 year and did not increase albuminuria.

Sacubitril/valsartan caused additional reductions in blood pressure compared

• There was no difference in safety or tolerability between sacubitril/valsartan and irbesartan among patients with CKD.

C Baigent (chair), R Haynes (co-principal investigator), MJ Landray (co-principal investigator), A Baxter, A Bethel, L Bowman, N Brunskill, P Cockwell, R Dayanandan, WG Herrington, M Hill, PK Judge, PA Kalra, C Knott, JJV McMurray, K Murphy, N Staplin, M Taal, DC Wheeler

UNIVERSITY OF OXFORD